
 Document Generated: 09/12/2025

Learning Style: Virtual Classroom

Technology: Java

Difficulty: Beginner

Course Duration: 5 Days

Next Course Date: September 22, 2025

Getting Started with Programming, OO & Java
Basics for Non-Developers (TT2000)

Page 1/9 https://kpcu.quickstart.com/getting-started-programming-oo-java-basics-tt2000.html

About this course:

Learning to program opens up a world of possibilities, whether you are looking to
build applications, improve your problem-solving skills, or just understand how
software works. Getting Started with Programming, OO, and Java 21 Basics for
Non-Developers is a hands-on, expert-led course designed to make coding
approachable, even if you have never written a line of code before. You will learn
how programs work, how to think like a developer, and how to write and organize
Java code in a way that makes sense. With plenty of hands-on practice, you will
gain confidence using Java 21’s latest features, working with IDEs, and
understanding key concepts like variables, loops, methods, and object-oriented
programming.

The average salary of a Java Developer is $90,992 per year.

Course Objective:

Page 2/9 https://kpcu.quickstart.com/getting-started-programming-oo-java-basics-tt2000.html

In this course, you will gain the essential programming skills needed to write,
structure, and troubleshoot Java applications with confidence. By the end, you will
be able to:

Write and run Java programs using IntelliJ (or Eclipse, if requested) and the
Java Development Kit (JDK) to understand how code is compiled and
executed.

Use variables, loops, conditionals, and methods to control program flow and
manage data efficiently.

Apply object-oriented programming principles, including classes, objects,
inheritance, and polymorphism, to design well-structured applications.

Work with Java's core features, such as arrays, strings, exceptions, and
collections, to build functional and organized code.

Understand and apply best practices in writing clean, reusable, and
maintainable Java code.

Build confidence in troubleshooting errors, debugging programs, and
thinking like a developer.

Audience:

Technically-minded attendees who want or who want to begin the process
of becoming an OO application developer

Technical team members from non-development roles, re-skilling to move
into software and application development roles within an organization

Recent college graduates looking to apply their college experience to
programming skills in a professional environment, or perhaps needing to
learn the best practices and standards for programming within their new
organization

Technical managers tasked with overseeing programming teams, or
development projects, where basic coding knowledge and exposure will be
useful in project oversight or communications needs

Prerequisites:

Basic computer literacy: Familiarity with computer operating systems, file
management, and general navigation to ensure a smooth learning
experience.

Foundational knowledge of IT concepts: Understanding of essential IT
terminologies and concepts, such as computer networks, software

Page 3/9 https://kpcu.quickstart.com/getting-started-programming-oo-java-basics-tt2000.html

applications, and data storage.

Analytical thinking: Ability to analyze problems and think critically to develop
logical solutions, fostering a programmer's mindset.

Course Outline:

1. Overview of Computer Programming

Explain what a program is
Explain why there are different types of languages
Explain what a compiler is
Explain what an interpreter is
Lab: Matching Terms

2. Features of a Program

Understand what the entry and exit points of an application are
Explain what variables are
Explain what programming instructions are
Explain what errors and exceptions are
Understand what programming algorithms are

3. Software Development Life Cycle

Explain the purpose of the software development life cycle
Explain what each phase is for
Explain the difference between the software development life cycle and a
methodology

4. Thinking in Objects

Understand the difference between a class and an object
Deconstruct an object into attributes and operations
Map an object to a class
Define inheritance
Lab: Designing an Application

5. The Java Platform

Introduce the Java Platform
Explore the Java Standard Edition
Discuss the lifecycle of a Java Program
Explain the responsibilities of the JVM
Executing Java programs
Garbage Collection

Page 4/9 https://kpcu.quickstart.com/getting-started-programming-oo-java-basics-tt2000.html

Documentation and Code Reuse

6. Using the JDK

Explain the JDK’s file structure
Use the command line compiler to compile a Java class
Use the command line Java interpreter to run a Java application class
Lab: Exploring MemoryViewer

7. The IntelliJ Paradigm

Introduce the IntelliJ IDE
The Basics of the IntelliJ interface
IntelliJ Projects and Modules
Creating and running Java applications
Tutorial: Working with IntelliJ 2023.2 (Community Edition)

8. Writing a Simple Class

Write a Java class that does not explicitly extend another class
Define instance variables for a Java class
Create object instances
Primitives vs Object References
Implement a main method to create an instance of the defined class
Java keywords and reserved words
Lab: Create a Simple Class

9. Adding Methods to the Class

Write a class with accessor methods to read and write instance variables
Write a constructor to initialize an instance with data
Write a constructor that calls other constructors of the class to benefit from
code reuse
Use the this keyword to distinguish local variables from instance variables
Lab: Create a Class with Methods

10. Exploring Object-Oriented Programming

Real-World Objects
Classes and Objects
Object Behavior
Methods and Messages
Lab: Define and use a New Java class

11. Inheritance, Abstraction, and Polymorphism

Encapsulation
Inheritance
Method Overriding
Polymorphism

Page 5/9 https://kpcu.quickstart.com/getting-started-programming-oo-java-basics-tt2000.html

Lab: Define and use Another Java Class

12. Language Statements

Arithmetic operators
Operators to increment and decrement numbers
Comparison operators
Logical operators
Return type of comparison and logical operators
Use for loops
Swtch Expressions
Switch Expressions and yield
Lab: Looping (optional)
Lab: Language Statements
Lab: Switch Expressions

13. Using Strings and Text Blocks

Create an instance of the String class
Test if two strings are equal
Perform a case-insensitive equality test
Contrast String, StringBuffer, and StringBuilder
Compact Strings
Text Blocks
Unicode support
Lab: Fun with Strings
Lab: Using StringBuffers and StringBuilders

14. Fields and Variables

Discuss Block Scoping Rules
Distinguish between instance variables and method variables within a
method
Explain the difference between the terms field and variable
List the default values for instance variables
Final and Static fields and methods
Lab: Field Test

15. Specializing in a Subclass

Constructing a class that extends another class
Implementing equals and toString
Writing constructors that pass initialization data to parent constructor
Using instanceof to verify type of an object reference
Pattern matching for instanceof
Overriding subclass methods
Safely casting references to a more refined type
Lab: Creating Subclasses

16. Using Arrays

Page 6/9 https://kpcu.quickstart.com/getting-started-programming-oo-java-basics-tt2000.html

Declaring an array reference
Allocating an array
Initializing the entries in an array
Writing methods with a variable number of arguments
Lab: Creating an Array

17. Formatting Strings

Format a String using the formatter syntax
Apply text formatting
Use String.format and System.out.printf
Lab: Textblocks

18. Records

Data objects in Java
Introduce records as carrier of immutable data
Defining records
The Canonical constructor
Compact constructors
Lab: Records

19. Java Packages and Visibility

Use the package keyword to define a class within a specific package
Discuss levels of accessibility/visibility
Using the import keyword to declare references to classes in a specific
package
Using the standard type naming conventions
Visibility in the Java Modular System
Correctly executing a Java application class
The Java Modular System
Defining Modules

20. Utility Classes

Introduce the wrapper classes
Explain Autoboxing and Unboxing
Converting String representations of primitive numbers into their primitive
types
Defining Enumerations
Using static imports
Deprecating classes and methods
Lab: Enumerations

21. Java Date/Time

The Date and Calendar classes
Introduce the new Date/Time API
LocalDate, LocalDateTime, etc.

Page 7/9 https://kpcu.quickstart.com/getting-started-programming-oo-java-basics-tt2000.html

Formatting Dates
Working with time zones
Manipulate date/time values

22. Inheritance and Polymorphism

Write a subclass with a method that overrides a method in the superclass
Group objects by their common supertype
Utilize polymorphism
Cast a supertype reference to a valid subtype reference
Use the final keyword on methods and classes to prevent overriding
Lab: Salaries - Polymorphism

23. Interfaces and Abstract Classes

Define supertype contracts using abstract classes
Implement concrete classes based on abstract classes
Define supertype contracts using interfaces
Implement concrete classes based on interfaces
Explain advantage of interfaces over abstract classes
Explain advantage of abstract classes over interfaces
Lab: Interfaces

24. Introduction to Exception Handling

Introduce the Exception architecture
Defining a try/catch blocks
Checked vs Unchecked exceptions
Lab: Exceptions

25. Exceptions

Defining your own application exceptions
Automatic closure of resources
Suppressed exceptions
Handling multiple exceptions in one catch
Enhanced try-with-resources
Helpful NullPointerException(s)
Lab: Exceptional
Lab: Helpful Nullpointers

26. Building Java Applications

Explain the steps involved in building applications
Define the build process
Introduce build scripts
Explain the standard folder layout
Resolving project dependencies
Tutorial: Importing code Using Maven

Page 8/9 https://kpcu.quickstart.com/getting-started-programming-oo-java-basics-tt2000.html

27. Introduction to Generics

Generics and Subtyping
Bounded Wildcards
Generic Methods
Legacy Calls To Generics
When Generics Should Be Used
Lab: DynamicArray
Lab: Adding Generics to Dynamic Array

28. Collections

Provide an overview of the Collection API
Review the different collection implementations (Set, List and Queue)
Explore how generics are used with collections
Examine iterators for working with collections
Lab: Create a simple Game using Collections

Credly Badge:

 Display your Completion Badge And Get The
Recognition You Deserve.

Add a completion and readiness badge to your
Linkedin profile, Facebook page, or Twitter account to
validate your professional and technical expertise. With
badges issued and validated by Credly, you can:

Let anyone verify your completion and
achievement by clicking on the badge
Display your hard work and validate your
expertise
Display each badge's details about specific
skills you developed.

Badges are issued by QuickStart and verified through
Credly.

 Find Out More or See List Of Badges

Powered by TCPDF (www.tcpdf.org)

Page 9/9 https://kpcu.quickstart.com/getting-started-programming-oo-java-basics-tt2000.html

https://www.credly.com/org/quickstart/badge/introduction-to-programming-oo-and-java-8-essentials-for-non-programmers-tt2000.1
https://www.credly.com/org/quickstart/badge/introduction-to-programming-oo-and-java-8-essentials-for-non-programmers-tt2000.1
https://www.credly.com/org/quickstart/badge/introduction-to-programming-oo-and-java-8-essentials-for-non-programmers-tt2000.1
https://kpcu.quickstart.com/completion-badges
https://www.credly.com/organizations/quickstart/badges
http://www.tcpdf.org

